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ABSTRACT

A method of analysis is described for characterizing the
discontinuities made of orthogonally crossed two striplines on
a suspended structure. Themethod ofanalysis isbasedon
generalized transverse resonant technique extended here to 4-
port configurations. The technique is used for determination
of resonant structure at a given frequency and subsequently the
equivalent circuit parameters of the discontinuities,

~ODU~ON

Inadvmcedplmw microwaveandmillimeter-wave
iutegmtedctictits, transmission line sweoftencreated onboth
sides of the substrate (1). These lines may be in parallel or

orthogonaltoeach other. The present paper reports

characterization of the discontinuities of orthogonally crossed
two stnplines as shown in Fig. 1. It is made up of the

crossing between two orthogonal striplines on opposite sides
of the same substrate and the auxili~ conducting planes to
enclose the substrate. lhe auxilitny walls are used for field

analysispurpo se. They permit the structure to be analyzed as
a rectangular waveguide discontinuity problem.

The method for analysis is based on the “generalized
transverse resonance technique” introduced for fmline step
discontinuity problem (2). The technique is extended hereto

a4-port configuration treated inthispaper. Themethod

consists oftwo parts. First, the resonant structure created

by auxiliary walls is described in terms of network
representation containing a reactive 4-port. Forafixed

resonant frequency, we try to find as many resonator sizes as
requiredforex~action of4-portmatix elements. The

secondptiofanalysis is aftdl-wave elecnomagmetic field
analysis in which the resonant frequency is found as an
eigenvalue problem.

CIRCUI’fREP~S ENTATION

A procedure for a 2-port resonance method (3 ,)is
extended to a 4-port configuration as follows. The crossing

between the two suspended striplines can be represented as a
4-port network at some reference planes sufficiently far from
thediscontinuity region. Eachportis terminated witia
reactance corresponding to the line section between the
reference plane and the auxiliary wall as shown in Fig. 2.
The network equations for the entire circuit are expressed in
matrix form as
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[[ Z]+diag[Zi]][I]=O

where [ Z ] is the normalized impedance matrix of 4-port
network, Zi ( i = 1,2,3,4 ) are the normalized terminal
impedances: Zi= j tan 13ili, and /i ( i = 1,2,3,4 ) are the
stripline lengths between the reference planes and the auxiliary
walls. [ I ] is the vector of the currents Ii (i = 1,2,3,4) as
shown in Fig. 2. In the absence of losses, [ Z ] is
imaginary. The resonant frequency is obtained from the
condition that, in the absence of sources, the voltages and
currents are non-trivial, and hence, that the determinant of the
matrix equals zero. The impedance matrix of a reciprocal 4-
port Iossless network possesses in general 10 independent
imaginary parameters, In the present case, however,

because of the symmetry of the structure, only five parameters
are needed to characterize the Z matrix. Now, by properly
choosing the terminal impedance Zi’s, namely Z1=Z2 and
Z3=Z4 ( thus 11=12, 13=14), the resonant condition is
simplified so that the problem is solved analytically. If these
conditions are applied, the equation for the resonant condition
can be factorized so that it can be written in the form

Z1l+Z1-Z12 =0

or Z33 + Z3 -Z34 = o

or (Z11+Z12+ Z1)(Z33+ Z34+Z3)-4Z132=0 .

Each equation corresponds to a different resonant behavior as
shown by the corresponding [ I ] eigenvector. For the first
equation, the eigenvector is 11=-12 and 13=14=0. This
condhion corresponds to an odd resonance of the structure
shown in Fig. 3(a), The stmctnre behaves as if an electic
wall is placed symmetrically along at the center of stripline 2.
For the given resonant frequency, the required resonance
condition provides the quantity Z11-Z12 from the value of 21.
Similary, the condition for the second equation is shown in
Fig. 3(b). For the last equation, the eigenvector for an even
resonance is obtained: 11=12 and 13=14. Substitution of
these conditions into an original 4-port marnx yields the 2-port
network matrix equation
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The use of symmea-y, therefore, has reduced the 4-port
network problem to that of a 2-port, whose impedance matrix
is solved by a 2-port resonance method. Combining the
results with those for the two structures in Fig. 3, we obtain
all five Z parameters.

A possible equivalent circuit respresentation which takes
into account the symmetry properties of the structure of Fig. 1
is shown in Fig. 4. ZC is used to represent the coupling
capacitance betsveen the two strips. Zp+Zp and Zq+Zq
represent the inductances associated with two stripline
sections, while Za and Zb represent the two strip-to-ground
capacitances.

FIELD ANALYSIS

The resonant structure of Fig. 1 can be subdivided into
three homogeneous regions as shown in Fig. 5. In terms of
the TE-to-z and TM-to-z representations, the hybrid fields in
each homogeneous region in the resonator structure are
represented by the sets of orthogonal functions with unknown

coefficients. The boundary conditions at each interface are
then imposed. The magnetic field discontinuity between the
opposite sides of each metallic strip Si ( i = 1,2) is expanded

in terms of a set of known orthogonal vector functions W)

defined over Si :

A HtG) = ~ I%@ XV(O i = I, 2

v

For a faster numerical convergence, the singular behavior of
the magnetic field component normal to the stripline edges can
be incorporated in the above expression by a proper choice of
the basis functions. The boundary conditions lead to a
homogeneous system of equations in terms of the unknown

coefficients Pv’s. The condition for non-trivial solution

determines the characteristic equation of the given stmcture.

This equation may be regarded as a function of co, 11,13

equated to zero:

f(m,ll,13)=o

For given value of to = ~, this can be solved to evaluate the

different pairs of 11 and 13 giving rise to the same resonant

frequency ~. These values of 11 and 13 can be used for

computing the discontinuity parameters discussed in the
previous section.

COMPUTED RESULTS

In the computations, the substrate was placed
symmetrically Emveen the top and the bottom planes, with
both strips having the same widths. Hence, the impedance
matrix representation of the discontinuities has Z11=Z33 and
Z12=Z34. The element values of the equivalent circuit
catcutated at three different frequencies are quoted in Table 1
along with the structural parameters used in the computations.
Reference planes were placed at the strip edges. Note that
the elements for Za and Zb (= Z@ are capacitors with negative
value. This is acceptable because they compensate the
parallel distributed capacitance for the isolated stripline in the
absence of the other stripline. Fig. 6 shows the
corresponding S parameters of the discontinuities.

Fig. 7(a)(b) show the longitudinal and transverse
components of the current densities at the center of the stip at
the three frequencies. The number of terms MN of the field
expressions in the homogeneous regions of Fig. 5 as well as

the number v of basis functions are also given. In Fig. 7(a),
it was observed that each figure was of perturbated cosine
form. The longitudinal current, hence, may be represented
by the combination of a cosine and an additional polynomial
functions (4) so that the computation time could be reduced.

Table 1 Element vstues of equivstent circuit

0.5 GHz 1 GHz 2 GHz

Lp=Lq 0.331nH 0.331nH 0.329nH

Ca=Cb -0.0885PF -O.1O3PF -O.1O1PF

cc 0.249pF 0.272pF 0.258pF

Lp=Lq=&

Ca=Cb=~
Jmzoza

cc. ~
JU2kzC

2P, Zq, Z& Zb, Zc : Normalized impedance

Zn: Suipline chsmcteristic impedsnce
(159.2, 159.1, 158.3f2 at 0.5, 1,2 GHz)

h1=b2=5mm, t.lmm

wl=w2=l mm, m = 3.8

CONCLUSIONS

A method of analysis has been described for
characterizing the discontinuities of two crossed striplines.
The method is based on a generalized transverse resonance
technique for computing the resonant frequency of a resonator
created by enclosing the crossing with auxiliary perfectly
conducting walls. This resonator problem is analyzed as the
waveguide scattering for waves traveling in the direction
normal to the substrate surface. For a specified frequency,
resonant structures are found by adjusting the lengths of the
strips and hence the resonator size. These structures are
used for deriving the equivalent circuit parameters
characterizing the discontinuity.

This method can also be applied for the characterization
of stripline-slodine transition.
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Fig. 4 Equivalent circuit for the problem
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