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ABSTRACT

A method of analysis is described for characterizing the
discontinuities made of orthogonally crossed two striplines on
a suspended structure.  The method of analysis is based on
generalized transverse resonant technique extended here 10 4-
port configurations. The technique is used for determination
of resonant structure at a given frequency and subsequently the
equivalent circuit parameters of the discontinuities.

INTRODUCTION

In advanced planar microwave and millimeter-wave
integrated circuits, transmission lines are often cyeated on both
sides of the substrate (1).  These lines may be in parallel or
orthogonal to each other. ~ The present paper reports
characterization of the discontinuities of orthogonally crossed
two striplines as shown in Fig. 1. It is made up of the
crossing between two orthogonal striplines on opposite sides
of the same substrate and the auxiliary conducting planes to
enclose the substrate.  The auxiliary walls are used for field
analysis purpose. They permit the structure to be analyzed as
a rectangular waveguide discontinuity problem." )

The method for analysis is based on the generalized
transverse resonance technique” innodqced for finline step
discontinuity problem (2). ~ The technique is extended here to
a 4-port configuration treated in this paper. The method
consists of two parts.  First, the resonant structure created
by auxiliary walls is described in terms of network
representation containing a reactive 4-port. Fora fixed
resonant frequency, we try to find as many resonator Sizes as
required for extraction of 4-port matrix elements. fl‘he:
second part of analysis is a full-wave electromagmetic field

analysis in which the resonant frequency is found as an
eigenvalue problem.

CIRCUIT REPRESENTATION

A procedure for a 2-port resonance method (3 )is )
extended to a 4-port configuration as follows.  The crossing
between the two suspended striplines can be rc_presented asa
4-port network at some reference planes sufficiently far from
the discontinuity region. Each port is terminated with a
reactance corresponding to the line section between the
reference plane and the auxiliary wall as shown in Fig. 2.
The network equations for the entire circuit are expressed in
matrix form as
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[[Z]1+diag[Zi]][I]=0

where [ Z ] is the normalized impedance matrix of 4-port
network, Zi (i=1,2,3,4 ) are the normalized terminal
1mpedances :Zi=jtan Bifi, and fi (i=1,2,3,4) are the
stripline lengths between the reference planes and the auxili
walls.  [1]1is the vector of the currents Ii (i = 1,2,3,4 ) as
_show_n inFig. 2. In the absence of losses, [ Z ] is
imaginary. The resonant frequency is obtained from the
condition that, in the absence of sources, the voltages and
currents are non-trivial, and hence, that the determinant of the
matrix equals zero.  The impedance matrix of a reciprocal 4-
port lossless network possesses in general 10 independent
Imaginary parameters. In the present case, however,

because of the symmetry of the structure, only five parameters
are needed to characterize the Z matrix.  Now, by properly
choosing the terminal impedance Zi's, namely Z1=72 and
Z3=74 ( thus /1=/2, [3=I/4), the resonant condition is
simplified so that the problem is solved analytically. If these
conditions are applied, the equation for the resonant condition
can be factorized so that it can be written in the form:

Z11+7Z1-7212 =0
or Z33+73-7Z34 =0

or  (Z11+Z12+7Z1)(Z33+2734+273)-42Z132=0

Each equation corresponds to a different resonant behavior as
shown by the corresponding [ 1] eigenvector.  For the first
equation, the eigenvector is I1=-12 and 13=14=0.  This
condition corresponds to an odd resonance of the structure
shown in Fig. 3(a). The structure behaves as if an electric
wall is placed symmetrically along at the center of stripline 2.
For the given resonant frequency, the required resonance
condition provides the quantity Z11-Z12 from the value of Z1.
Similary, the condition for the second equation is shown in
Fig. 3(b).  For the last equation, the eigenvector for an even
resonance is obtained : I1=I2 and I3=]4.  Substitution of
these conditions into an original 4-port matrix yields the 2-port
network matrix equation

V1 zit+z122z13) |1
val = 2713733 +734] |13
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The use of symmeiry, therefore, has reduced the 4-port
network problem to that of a 2-port, whose impedance matrix
is solved by a 2-port resonance method. ~ Combining the
results with those for the two structures in Fig. 3, we obtain
all five Z parameters.

A possible equivalent circuit respresentation which takes
into account the symmetry properties of the structure of Fig. 1
is showninFig. 4. Zc is used to represent the coupling
capacitance between the two strips.  Zp+Zp and Zq+Zq
represent the inductances associated with two stripline
sections, while Za and Zb represent the two strip-to-ground
capacitances.

FIELD ANALYSIS

The resonant structure of Fig. 1 can be subdivided into
three homogeneous regions as shown in Fig. 5.  In terms of
the TE-to-z and TM-to-z representations, the hybrid fields in
each homogeneous region in the resonator structure are
represented by the sets of orthogonal functions with unknown

coefficients.  The boundary conditions at each interface are
then imposed. ~ The magnetic field discontinuity between the
opposite sides of each metallic strip Si (i = 1,2 ) is expanded

in terms of a set of known orthogonal vector functions Xv®
defined over Si :

A Ht®) = 3 Py Xv(D
v

For a faster numerical convergence, the singular behavior of
the magnetic field component normal to the stripline edges can
be incorporated in the above expression by a proper choice of
the basis functions. The boundary conditions lead to a
homogeneous system of equations in terms of the unknown
coefficients Pv's.  The condition for non-trivial solution
determines the characteristic equation of the given structure.

This equation may be regarded as a function of ®, /1, I3
equated to zero ;

i=1,2

f(w,1,3)=0

For given value of ® = @y, this can be solved to evaluate the
different pairs of /1 and /3 giving rise to the same resonant
frequency @y. These values of /1 and /3 can be used for

computing the discontinuity parameters discussed in the
previous section.

COMPUTED RESULTS

In the computations, the substrate was placed
symmetrically between the top and the bottom planes, with
both strips having the same widths. Hence, the impedance
matrix representation of the discontinuities has Z11=733 and
Z12=734. The element values of the equivalent circuit
calculated at three different frequencies are quoted in Table 1
along with the structural parameters used in the computations.
Reference planes were placed at the strip edges.  Note that
the elements for Za and Zb (= Za) are capacitors with negative
value.  This is acceptable because they compensate the
parallel distributed capacitance for the isolated stripline in the
absence of the other stripline.  Fig. 6 shows the
corresponding S parameters of the discontinuities.
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Fig. 7(a)(b) show the longitudinal and transverse
components of the current densities at the center of the strip at
the three frequencies. The number of terms MN of the field
expressions in the homogeneous regions of Fig. 5 as well as
the number v of basis functions are also given. In Fig. 7(a),
it was observed that each figure was of perturbated cosine
form.  The longitudinal current, hence, may be represented
by the combination of a cosine and an additional polynomial
functions (4) so that the computation time could be reduced.

Table 1 Element values of equivalent circuit

0.5GHz 1 GHz 2 GHz
Lp=Lq 0.331nH 0.331nH 0.329nH
Ca=Cb -0.0885pF -0.103pF -0.101pF
Cc 0.249pF 0.272pF 0.258pF

Lp=Lq=-29Zp.
jw
cChe 1
Ca=Cb=— 7
— 1

T Y77
Zp, Zq, Za, Zb, Zc : Normalized impedance

Zo : Stripline characteristic impedance
(159.2,159.1, 158.3Q at 0.5, 1, 2 GHz)

hi =h2=5mm, t=1mm
wl=w2=1mm, er=3.8
CONCLUSIONS

A method of analysis has been described for
characterizing the discontinuities of two crossed striplines.
The method is based on a generalized transverse resonance
technique for computing the resonant frequency of a resonator
created by enclosing the crossing with auxiliary perfectly
conducting walls. This resonator problem is analyzed as the
waveguide scattering for waves traveling in the direction
normal to the substrate surface.  For a specified frequency,
resonant structures are found by adjusting the lengths of the
strips and hence the resonator size.  These structures are
used for deriving the equivalent circuit parameters
characterizing the discontinuity.

This method can also be applied for the characterization
of stripline-slotline transition.
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Fig. 3 Equivalent circuits for an odd resonance
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Fig. 4 Equivalent circuit for the problem

Fig. 6 S parameters of the discontinuites of the structure
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